

Pressure Transmission Fluids

Table of Content

1	General					
2	Process conditions Technical data of fluids					
3						
	3.1	Standard and food-compliant oil FD1	3			
	3.2	High-temperature oil FV3H	4			
	3.3	Halocarbon oil FC	5			
	3.4	Silicone oil FM50	6			
	3.5	Low-temperature oil FM5	7			
	3.6	Medical white oil FW	8			
	3.7	Glycerine/water mixture FGW	9			
	3.8	Alcohol/water mixture FAW	.10			
	3.9	Liquid metal FMH1	.11			

1 General

Pressure transmission fluids are used to transfer the process pressure from the diaphragm to the sensor element and therefore represent a fundamental component of a diaphragm seal system (see also TA_031 General Information on Diaphragm Seals).

The following provides information on the properties and applications of the different pressure transmission fluids.

2 Process conditions

Important factors when selecting a pressure transmission fluid include the process conditions with regard to pressure and temperature. The temperature range is based on the physical properties of the pressure transmission fluid. The process pressure is also important, as a combination of high temperature and vacuum pressure is especially critical. Certain production steps may have to be performed to ensure the suitability of the diaphragm seal system, depending on the critical process point.

LABOM pressure transmission fluids can be used in vacuum conditions up to a process temperature t_1 without special treatment if the diaphragm seal is installed correctly. Special treatment during manufacturing is necessary for higher temperatures. A differentiation is made between negative pressure service and an vacuum service.

The different zones are separated by three straight lines. The range below 30 mbar abs represents a special case, which requires the vacuum service in all cases above the aforementioned t_1 limit temperature.

Consult Technical Support with regard to especially critical process points. Depending on the exact process and installation conditions, often special solutions can be found.

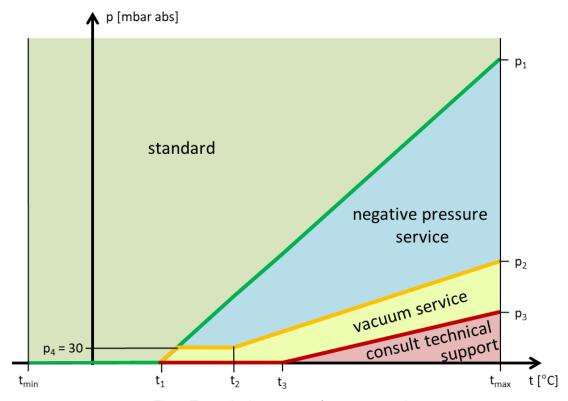


Fig. 1 Zones in the pressure/temperature chart

3 Technical data of fluids

The table below is intended to simplify the selection. The following pages describe the pressure transmission fluids in more detail.

Code	Description/Application	Туре	t _{min} [°C]	t _{max} [°C]	density [g/cm ³]	kin. viscosity @ 40°C [mm²/s]	Tk [%/10K]	compres- sibility [%/100 bar]
FD1	silicon-free oil suitable for food stuff applications	polyalphaolefine oil	-40	230	0,82	31	0,76	0,6
FV3H	vacuum and high temperature oil	highly refined mineral oil	-10	400	0,87	95	0,73	1
FC	Halocarbon oil for oxygen applictions	halogenated carbon chains	-30	190	1,92	56	0,9	0,73
FM50	silicone oil M50	high viscosity silicone oil	-50	300	0,96	40	0,95	1,02
FM5	low temperature silicone oil M5	low viscosity silicone oil	-90	160	0,92	4	1,08	1,2
FW	white oil for food stuff applications	low viscosity paraffin	-10	170	0,85	43	0,76	0,6
FGW	glycerine/water mixture	glycerine/water 70/30	-30	110	1,18	8	0,57	0,29
FAW	alcohol/water mixuture for the paint industry	isopropanol/water 40/60	-20	75	0,95	1,9	0,52	0,81
FMH1	metal liquid for high temperatures or pressures	low melting alloy	0	350	6,44	1,4	0,126	0,02

3.1 Standard and food-compliant oil FD1

Properties/Applications

Silicone-free, synthetic oil with universal properties, especially suitable for applications in the food and pharmaceutical industry.

Meets the requirements of FDA 21 CFR 178.3570 concerning the use of lubricants with incidental contact with food and is H1 registered.

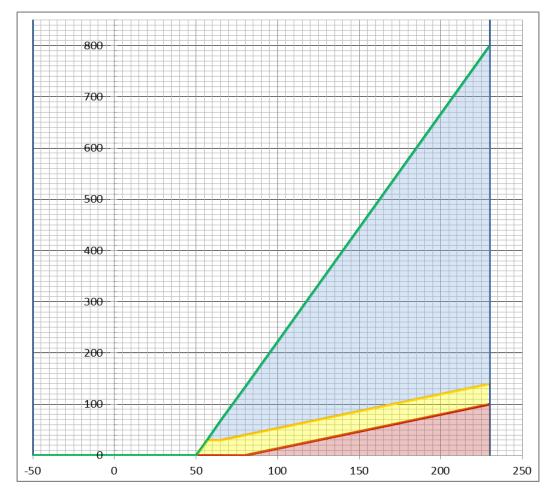
Technical Data

Density 0.82 g/cm³ Viscosity (at 40 °C) 31 mm²/s

 t_{min} -40 °C minimum temperature t_{max} 230 °C maximum temperature

Data for pressure / temperature chart

 t_1 50 °C max. temperature with vacuum + standard service


t₂ 65 °C Intersection of vacuum and negative pressure service limit at 30 mbar abs

t₃ 80 °C max. temperature with vacuum + vacuum service

p₁ 800 mbar abs min. pressure at t_{max} and standard service

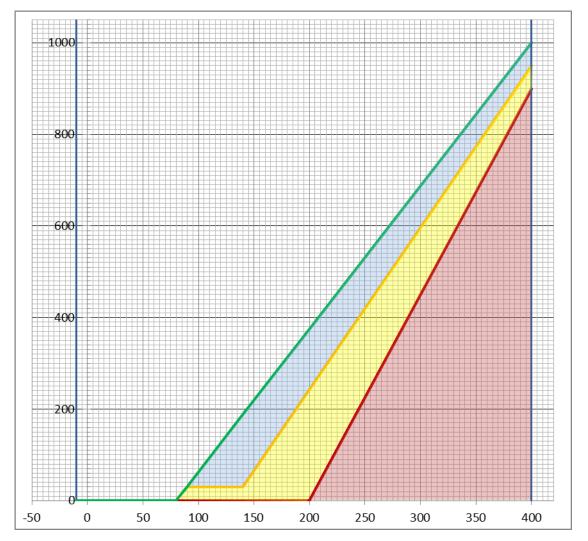
 p_2 140 mbar abs min. pressure at t_{max} and negative pressure service

p₃ 100 mbar abs min. pressure at t_{max} and vacuum service

3.2 High-temperature oil FV3H

Properties/Applications

Silicone-free mineral oil especially suitable for high temperatures and vacuum applications under temperature.


Technical Data

Density 0.87 g/cm³ Viscosity (at 40 °C) 94 mm²/s

 t_{min} -10 °C minimum temperature t_{max} 400 °C maximum temperature

Data for pressure / temperature chart

80 °C max. temperature with vacuum + standard service t_1 140 °C Intersection of vacuum and negative pressure service limit at 30 mbar abs t_2 200 °C max. temperature with vacuum + vacuum service t_3 1000 mbar abs min. pressure at t_{max} and standard service p_1 950 mbar abs min. pressure at t_{max} and negative pressure service p_2 900 mbar abs min. pressure at t_{max} and vacuum service p_3

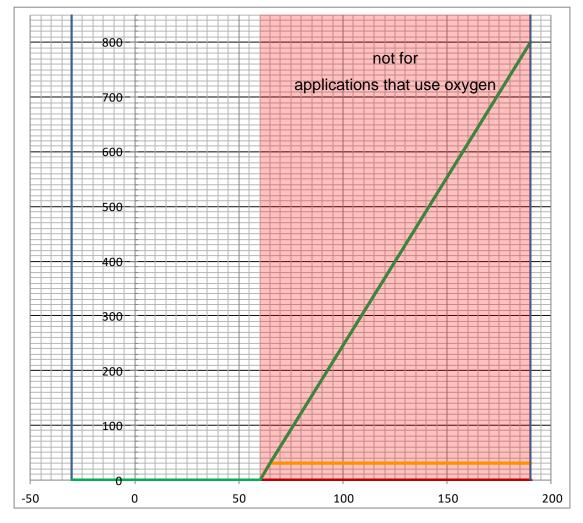
3.3 Halocarbon oil FC

Properties/Applications

Inert, silicone-free halocarbon oil, especially suitable for applications that use oxygen. BAM approval up to 60°C at 80 bar.

Technical Data

Density 1.92 g/cm³ Viscosity (at 40 °C) 56 mm²/s


 t_{min} -30 °C minimum temperature

t_{max} 60 °C maximum temperature for applications that use oxygen

 t_{max} 190 °C maximum temperature for other applications

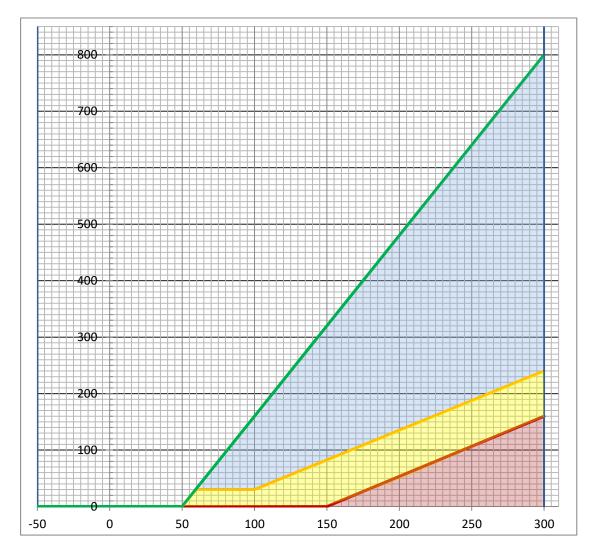
Data for pressure / temperature chart

60 °C max. temperature with vacuum + standard service t_1 n/a t_2 190 °C max. temperature with vacuum + vacuum service t_3 800 mbar abs min. pressure at t_{max} and standard service p_1 30 mbar abs min. pressure at t_{max} and negative pressure service p_2 0 mbar abs min. pressure at t_{max} and vacuum service p_3

3.4 Silicone oil FM50

Properties/Applications

All-purpose silicone oil. Alternative to FD1 if extended temperature range is required.


Technical Data

Density 0.96 g/cm³ Viscosity (at 25 °C) 50 mm²/s

 t_{min} -50 °C minimum temperature t_{max} 300 °C maximum temperature

Data for pressure / temperature chart

50 °C max. temperature with vacuum + standard service t_1 100 °C Intersection of vacuum and negative pressure service limit at 30 mbar abs t_2 150 °C max. temperature with vacuum + vacuum service t_3 800 mbar abs min. pressure at t_{max} and standard service p_1 p_2 240 mbar abs min. pressure at t_{max} and negative pressure service 160 mbar abs min. pressure at t_{max} and vacuum service p_3

3.5 Low-temperature oil FM5

Properties/Applications

Low-viscosity silicone oil, especially suitable for low temperatures down to -90 °C.

No vacuum service is offered for this oil.

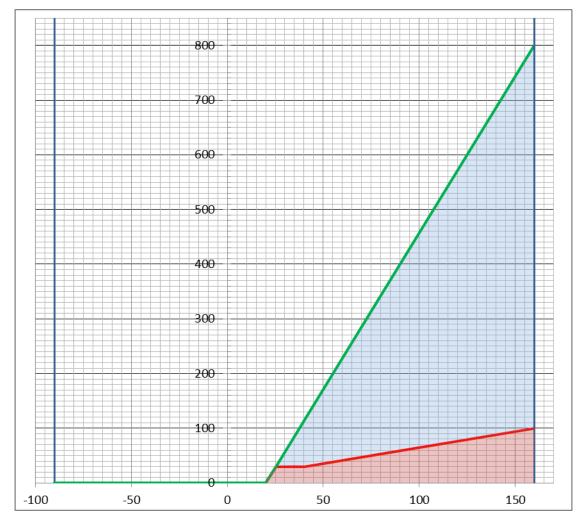
Technical Data

Density 0.92 g/cm³ Viscosity (at 25 °C) 5 mm²/s

 t_{min} -90 °C minimum temperature t_{max} 160 °C maximum temperature

Data for pressure / temperature chart

t₁ 20 °C max. temperature with vacuum + standard service


 t_2 40 °C Intersection of vacuum and negative pressure service limit at 30 mbar abs

 t_3 n/a

 p_1 800 mbar abs min. pressure at t_{max} and standard service

p₂ 100 mbar abs min. pressure at t_{max} and negative pressure service

p₃ n/a

3.6 Medical white oil FW

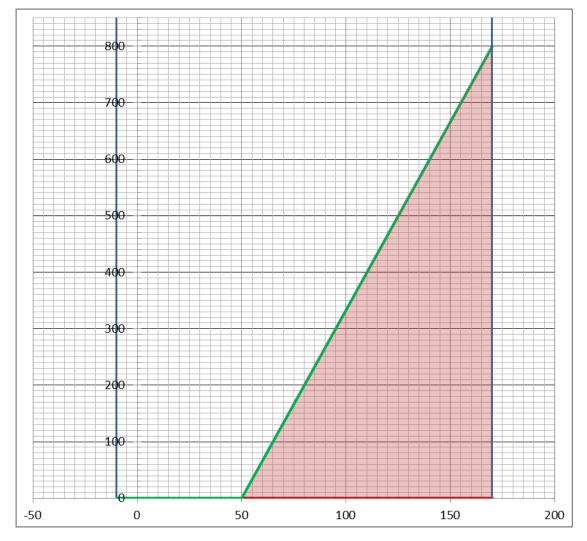
Properties/Applications

Medical white oil (highly liquid paraffin) can be used as an alternative to FD1. However, the temperature limits are worse than with FD1. No negative pressure or vacuum service is available either.

Technical Data

Density 0.85 g/cm³ Viscosity (at 40 °C) 43 mm²/s

 t_{min} -10 °C minimum temperature t_{max} 170 °C maximum temperature


Data for pressure / temperature chart

t₁ 50 °C max. temperature with vacuum + standard service

 $egin{array}{lll} t_2 & & \mbox{n/a} \\ t_3 & & \mbox{n/a} \end{array}$

 p_1 800 mbar abs min. pressure at t_{max} and standard service

 $\begin{array}{ccc} p_2 & & \text{n/a} \\ p_3 & & \text{n/a} \end{array}$

3.7 Glycerine/water mixture FGW

Properties/Applications

Glycerine/water mixtures have good physical properties (very low compressibility, low thermal expansion and viscosity). However, the temperature range ends at 110 °C.

Technical Data

Density 1.18 g/cm³ Viscosity (at 40 °C) 8 mm²/s

 t_{min} -30 °C minimum temperature t_{max} 110 °C maximum temperature

Data for pressure / temperature chart

 t_1 20 °C max. temperature with vacuum + standard service

p₁ 1000 mbar abs min. pressure at t_{max} and standard service

 $\begin{array}{cc} p_2 & & n/a \\ p_3 & & n/a \end{array}$

3.8 Alcohol/water mixture FAW

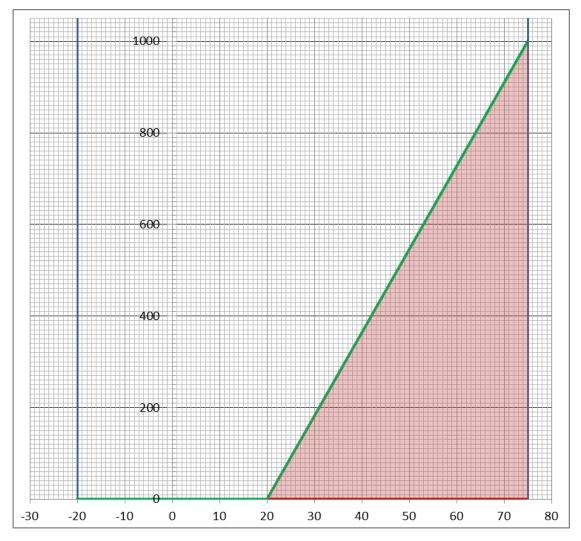
Properties/Applications

Alcohol/water mixtures are mainly used in the paint industry, as, in the event of a malfunction, paint wetting problems can be ruled out. Adding alcohol improves the lower temperature limit.

Technical Data

Density 0.95 g/cm³ Viscosity (at 40 °C) 1.8 mm²/s

 t_{min} -20 °C minimum temperature t_{max} 75 °C maximum temperature


Data for pressure / temperature chart

t₁ 20 °C max. temperature with vacuum + standard service

 $egin{array}{lll} t_2 & & \mbox{n/a} \\ t_3 & & \mbox{n/a} \end{array}$

p₁ 1000 mbar abs min. pressure at t_{max} and standard service

 $\begin{array}{cc} p_2 & & n/a \\ p_3 & & n/a \end{array}$

3.9 Liquid metal FMH1

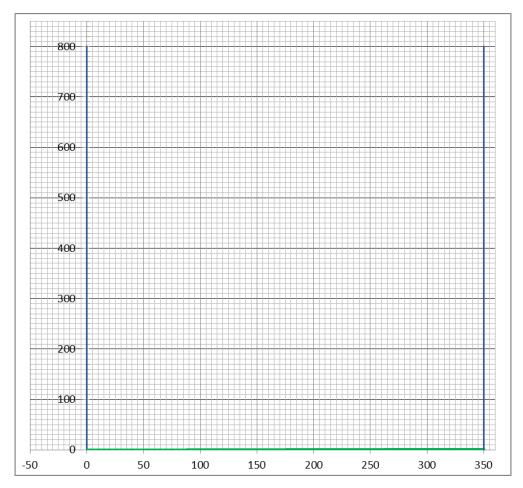
Properties/Applications

This special metal alloy is liquid at room temperature. Thermal expansion and compressibility are minimal. This liquid is vacuum-resistant without special treatment up to a maximum temperature, although the measuring instrument can be destroyed below 0 °C.

Technical Data

Density 6.44 g/cm³ Viscosity (at 40 °C) 1.8 mm²/s

 t_{min} 0 °C minimum temperature t_{max} 350 °C maximum temperature


Data for pressure / temperature chart

 t_1 20 °C max. temperature with vacuum + standard service

 $egin{array}{lll} t_2 & & \mbox{n/a} \\ t_3 & & \mbox{n/a} \\ \end{array}$

p₁ 0 mbar abs min. pressure at t_{max} and standard service

 $\begin{array}{ccc} p_2 & & \text{n/a} \\ p_3 & & \text{n/a} \end{array}$

